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Abstract—This work is concerned with applying iterative set for the imaged volume is necessary in order to obtain the
image reconstruction, based on constrained total-variain min-  reconstruction, and the complete image must be solved ffor al

imizat[on, to low-intensity X-ray CT systems that .have. a hig\ at once; the image cannot be gotten voxel-by-voxel.
sampling rate. Such systems pose a challenge for iterativenage . . . .
reconstruction, because a very fine image grid is needed to More concretely, I_et us consider a Ilnea_lr Imaglng. model
realize the resolution inherent in such scanners. These inge USing a voxel expansion of the volume and ideal conditions of
arrays lead to under-determined imaging models whose invaion  perfect data consistency:

is unstable and can result in undesirable artifacts and nois

patterns. There are many possibilities to stabilize the imging g = Xf, (1)
model, and this work proposes a method which may have an o

advantage in terms of algorithm efficiency. The proposed méiod Where g represents the projection data as a 1D vecfor;
introduces additional constraints in the optimization problem; is a vector of voxel valuesX is the system matrix, which

these constraints set to zero high spatial frequency compents yields line integrals through the volume and for the present

which are beyond the sensing capability of the detector. The : . . e
method is demonstrated with an actual CT data set and compax work is based on the ray intersection length as specified in

with another method based on projection up-sampling. Siddon's_metho_d- T_his model, which fc_’rms the bas‘js O_f many
IIR algorithms, is difficult to solve explicitly for realist size
models of a CT system. The matri¥ is ill-conditioned and
. INTRODUCTION can be extremely large, up to a sizelof x 10°. Equation (1)

. . is,usually solved implicitly by one of many algorithms, con-
HIS proceedings focuses on a fundamental issue .0f . : : .

S T . ugate gradients, algebraic reconstruction techniqueRTJA
resolution in iterative image reconstruction (lIR). Il

: : : L= etc. Two practical issues arise in the implicit solution af. E
is being considered for application in computed tomograp P P of

(CT), see for example [1], because it is possible to acco ?(F)] () the voxel representation of the image must include t
' ; whole region where the measured transmission rays intersec

for noise in the data model and accordingly allow for high ith the support of the subject [4], and (II) to attain the

quality images with a reduced exposure [2]. IIR metho%trinsic resolution of the data the voxels must be small

being considered for CT, all involve implicit solution, see ompared with the detector bin width. The combination of

section 15.3 of [3], for the image as opposed to eXp“Cchuese two factors causes a computational burden, because

solution, derived from exact or approximate inverses to th? . o . X
: - : straight-forward voxelization of the reconstruction vole will
continuous cone-beam transform. For explicit reconsuoct

algorithms, which are generally some variant of filteredkbaclead to a very large array. But also, mathematically, thersdc

projection (FBP), the reconstructed volume can be obtainggmt that voxels should be small compared to the detector

one point at a time. Imaaes can be shown on arids of any souS leads to an under-determined linear system for Eq. (1),
PO o 9ges | . 9 Y Sf§&cause there will be more unknown voxel values than known
and with arbitrarily small grid spacing, for example blogin

. . ray-transmission measurements. In this work, we examine a
up a region-of-interest (ROI). Note, that does not mean the)

I . . . couple of possible solutions for addressing the secondissu
resolution is arbitrarily high, because the system regmiut P P 9

is still limited by the discrete data sampling. Reconsiarct V—v;ieallng with the large null-space of Eq. (1) in a controlled
by implicit solution allows more flexible and realistic data Y- . . .
In Sec. Il we present the image reconstruction algorithms

models for the tom(_)graph|c system, but at a price. As Pomtg(rjld in Sec. lll we demonstrate them on an actual low-intgnsit
out often, IIR algorithms are generally more computatitynal

. . . . : . CT scan.
intensive. Another important issue is that a complete esjoan
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projection data is likely not consistent with the image node
To solve this optimization problem, we have been developi
a heuristic algorithm [5], [6], [7], [8], [9], [10] that alteates
between projection-onto-convex-sets (POCS), to enfdnee {
constraints, and steepest descent (SD) to reduce imagehgV.
key point of this algorithm is that the SD step-size is coltetb
adaptively, so as to not undo progress toward the feasi
image set with POCS. This alternating algorithm is calle)
adaptive SD-POCS (ASD-POCS). For investigations whe
solving Eq. (2) accurately is important, optimality comafits
should be checked [6], [10]. On the other hand, for practic
applications it may not be necessary to have an accuratersol
[7], and in such cases ASD-POCS yields a clinically usef
image within 10-20 iterations.
Image reconstruction algorithms for CT based on Eq. (2
have been shown to be effective for sparse-view projectig
data [5], [11], [12], [6], [7], [13], [9], [14], [15], [16], vihich
has obvious implications for patient dose. More recently,
have been interested in how to apply ASD-POCS to wh
has traditionally accepted as fully angularly-samplecdBor
such data, structures on the scale of a detector bin-width 3
expected to be resolved. For IIR, this requirement poses q.l_r]& 1. FBP slice image of a rabbit scanned by a low-dose X@ouaT
above-mentioned problem that the number of voxels may Bgtem. The raw FBP image was smoothed by a Gaussian fildering the
much larger than the number of data, and direct applicatiéfpge TV by a factor of 8. The indicated rectangles show thésRihich
of the IIR algorithm may lead to strange noise patterns whif 52 e Agorthm comparions. i paricur thelone surounds
can interfere with imaging tasks [10]. There are likely many,0.04] mnt1.
ways to resolve this problem; for example, introducing a-non
zero cross-section to the ray modelthmay yield nicer noise ) . )
patterns while maintaining image resolution. At the sammeti S€tvmax = 1/(27w). Although this choice makes sense physi-
more realistic system model ling usually comes at the experf@lly, vmax can be taken as a algorithm parameter, but varying
of computational speed. As a result, we have been seekifigx iS beyond the scope of this study. Adding this constraint
other alternatives. to the optimization problem in Eq. (2) leads to frequency-
In Ref. [10], we propose to stabilize the problem in Eq. (2onstrained ASD-POCS. This approach involves processing
by making the following observation: CT resolution is non€wer data in exchange for computing DFTs, which can be
uniform, and generally, the angular-sampling is worse th&lgne efficiently with the fast Fourier transform. The pseudo
detector resolution. Assuming that the individual prdjmet code for frequency-constrained ASD-POCS is the same as that
sampling satisfies Nyquist frequency, each projection aan fgPorted in Ref. ([10]) with the additional steps of enfari
up-sampled to increase the number of measurement ray$=8t (3) at each line where the image positivity is enforced.
each projection. We will still have a data set which is undef0r the present results, the frequency constraint was ietpos
sampled in the angular direction with respect to the vefgfore positivity.
high resolution imaging grid. But we already know that TV-
minimization approaches appear to be effective with thiety lll. RESULTS
of under-sampling. We refer to this approach as up-samplingThe up-sampling and frequency constrained ASD-POCS
ASD-POCS or, in this text, as simply up-sampling. algorithms are demonstrated with an XCounter CT scan of
In this proceedings, we propose another approach whiahrabbit with a thin wire taped to the outside of the sample
may have even a greater advantage in terms of algoritholder. The data are low-intensity and contain 1878 primast
efficiency. The method comes from realizing that while weiith a 2266x64 bin detector at a resolution of 0.1 mm.
need many voxels per bin-width for flexibility of the imageThe thin wire provides a good resolution test for the image
representation, we cannot hope to actually attain truersupeeconstruction algorithm. For the present purpose, we tizde
resolution where structures smaller than the detector hiniddle row on the detector from this data set and focus on
are visible. To capture this idea mathematically, we impo@® fan-beam CT reconstruction with 1878 projections on a
constraints on the Fourier transform of the image. Spedifica 2266-bin linear detector array.
high frequency components of the image are set to zero:  An FBP image of this data set is shown in Fig. 1, where
FE(v| > vina) = 0 3) some regulari_zation i_s performed by Gaussia_n smoothirlg_wit
’ a window 2 pixels wide. The rectangles indicate the regions
whereF is the discrete Fourier transform (DFT);represents where comparisons of the different algorithms are shown.
spatial frequency; and the frequency magnituglg, is deter- Comparisons for each algorithm will be made at a level of
mined by the bin spacing. If the detector bins have widtve image regularization where each image’s TV-norm is an ight



Gaussian—filtered FBP ASD-POCS (projection up-sampling)

ASD-POCS (0.1 mm pixels) ASD-POCS (spatial frequency constraints)

. Fig. 3. (Top) ASD-POCS image obtained from the up-sampleth da
ASD-POCS (0'025 mm p|xels) set. (Bottom) ASD-POCS image reconstructed from origiratladset with
e additional constraints on the spatial frequency. For batlages the pixel
width is 0.025 mm. The image TV for each case is set to an eighthat
of the raw FBP image. The display window is the same as thaigfZF

relative to FBP, because the image is forced to be uniform ove
the 0.1mmx 0.1mm squares. Simply going to a larger array
does improve the ASD-POCS image, but the noise pattern
shows additional false structure when compared with the FBP
image. These structures arise from the fact that the imaging
problem is under-sampled by roughly a factor of ten and
Fig. 2. (Top) FBP ROI's for the image presented in Fig. 1. @& ASD- this under-sampling occurs in both view-angle and detector
POCS imags% fggggtfiunf;e‘ie frfg(f;'; r?;?l:f;?é éi?:gnf]ogr? ignfij é"g‘agf'}igiﬁi bin directions. The random, sparse specks that appear could
g‘?ggg "r:])rfpixels. The imgge TV for each case is get 1 an eiggnthab of DPe confused with micro-calcifications in the context of Istea

the raw FBP image. The display window is [0,0.04] mion the left ROI imaging.

d [0,0.09 1 on the right ROI. . . . .
and | J mT on the right RO! Finally, we show images for ASD-POCS using up-sampling

and frequency constraints, and the resulting region-tfrést

images are shown in Fig. 3. For the up-sampling method the
of that of the unregularized FBP image. The images are showsta are up-sampled at each projection so that the datazeet si
just to give a sense about the behavior of the algorithmsem@jominally becomes 1878 views by 9064 virtual bins prior to
rigorOUS evaluation with different levels of regularimiWi" reconstruction by ASD-POCS. The frequency constraint ASD-
be performed in future work. POCS takes the original 18%2266 data set as input. As can

We illustrate the problems with employing a matchedse seen in the figure, both approaches remove the disturbing

resolution grid, 10241024, and a very high resolution grid,noise pattern seen at the bottom of Fig. 2. Each of these
4096x 4096, with the basic ASD-POCS algorithm. The pixeimages show some potential advantage over FBP in that the
width is 0.1 mm for the former grid and 0.025 mm for thavire appears to be better focused in the up-sampling approac
latter. Note that the rabbit support projects onto the n@ddand the image noise level is reduced approximately 20% for
1000 bins of the full projection. The FBP image is shown oboth up-sampling and frequency constrained ASD-POCS. It
a 4096x<4096 grid, but because FBP is based on an expligt possible that the frequency constraint method could lead
inverse its pixel values are not affected by the grid size. to better resolution by allowingmax to be increased. Such a
Fig. 2 the matched grid clearly leads to a loss of resolutiatudy will be investigated in future work.



IV. CONCLUSION [17] R. Chartrand, E. Y. Sidky, and X. Pan, “Frequency extap
We have developed modifications to ASD-POCS that allow t;"u’g|?C{i{i‘(‘,’r?;:,%”gfsx,fh"a’ﬂf;ﬁiggfﬁ?rz'gﬁén';tyt_p,;f,’f'f’ ""Z}%@ﬁf&? rcrol
for high-resolution recovery of structures occurring ore th  IEEE ISBI.
scale of the detector bin width. In particular, in this work w
show that including constraints on the spatial frequenofes
the reconstructed image can improve ASD-POCS images by
eliminating false structures, which arise from the largd-nu
space inherent in the imaging model when very high-resmiuti
grids are used to represent the image. Further researdh, wil
compare the up-sampling and frequency constraint appesach
with many data sets and different levels of image regularity
and we will also look into implementing more realistic ray-
models that account for source spot-size and the extent of
the detector bins. This realistic modeling in conjunctioithw
frequency extrapolation [17] may allow even further improv
ment of CT image quality.
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